

Жыйналыштар

0дөн (N-1)га дейре номурланган N тоо горизонтал түз сызыкта турат. i-инчи тоонун бийиктиги H_i ($0 \le i \le N-1$). Ар бир тоонун чокусунда так бир киши турат.

Сен 0дөн (Q-1)га дейре номурланган Q жыйналышты уюштургуң келет. j-инчи жыйналышка $(0 \le j \le Q-1)$ L_j -инчи, ..., R_j -инчи тоолордон киши(лер) катышат ($0 \le L_j \le R_j \le N-1$). Бул жыйналыш үчүн, сен x-инчи тоону ($L_j \le x \le R_j$) тандаш керек. Сенин тандооңдон, жыйналыштын баасы төмөнкүдөй эсептелет:

- y-инчи киши катышуучунун баасы ($L_j \leq y \leq R_j$) x-инчи,..., y-инчи тоо(лор)дун бийиктиктеринин эң чоңуна барабар. (x-инчи катышуучунун баасы анын тоонун бийиктигине барабар).
- Жыйналыштын баасы бардык катышуучуларынын бааларынын суммасына барабар.

Ар бир жыйналыш үчүн, аны уюштуруунун эң аз мүмкүн болгон баасын тапкың келет. Эсиңде болсун: Ар бир жыйналыштан кийин бардык катышуучусу өзүнүн тоосуна кайта келет. Ошондуктан, жыйналыштын баасы башка жыйналыштардын баалары менен байланбайт.

Implementation details

You should implement the following function:

```
int64[] minimum_costs(int[] H, int[] L, int[] R)
```

- H: an array of length N, representing the heights of the mountains.
- ullet L and R: arrays of length Q, representing the range of the participants in the meetings.
- This function should return an array C of length Q. The value of C_j ($0 \le j \le Q 1$) must be the minimum possible cost of holding the meeting j.
- ullet Note that the values of N and Q are the lengths of the arrays, and can be obtained as indicated in the implementation notice.

Example

Let
$$N=4$$
, $H=[2,4,3,5]$, $Q=2$, $L=[0,1]$, and $R=[2,3]$.

The grader calls $minimum_costs([2, 4, 3, 5], [0, 1], [2, 3])$.

The meeting j=0 has $L_j=0$ and $R_j=2$, so will be attended by the people living on the mountains 0, 1, and 2. If the mountain 0 is chosen as the meeting place, the cost of the meeting 0 is calculated as follows:

- The cost of the participant from the mountain 0 is $\max\{H_0\}=2$.
- The cost of the participant from the mountain 1 is $\max\{H_0, H_1\} = 4$.
- The cost of the participant from the mountain 2 is $\max\{H_0,H_1,H_2\}=4$.
- Therefore, the cost of the meeting 0 is 2+4+4=10.

It is impossible to hold the meeting 0 at a lower cost, so the minimum cost of the meeting 0 is 10.

The meeting j = 1 has $L_j = 1$ and $R_j = 3$, so will be attended by the people living on the mountains 1, 2, and 3. If the mountain 2 is chosen as the meeting place, the cost of the meeting 1 is calculated as follows:

- The cost of the participant from the mountain 1 is $\max\{H_1,H_2\}=4$.
- The cost of the participant from the mountain 2 is $\max\{H_2\}=3$.
- The cost of the participant from the mountain 3 is $\max\{H_2,H_3\}=5$.
- Therefore, the cost of the meeting 1 is 4+3+5=12.

It is impossible to hold the meeting 1 at a lower cost, so the minimum cost of the meeting 1 is 12.

The files sample-01-in.txt and sample-01-out.txt in the zipped attachment package correspond to this example. Other sample inputs/outputs are also available in the package.

Constraints

- $1 \le N \le 750000$
- 1 < Q < 750000
- $1 \le H_i \le 1\,000\,000\,000\,(0 \le i \le N-1)$

- $0 \le L_j \le R_j \le N 1 \ (0 \le j \le Q 1)$
- $(L_j, R_j)
 eq (L_k, R_k)$ $(0 \le j < k \le Q-1)$

Subtasks

- 1. (4 points) $N \le 3000$, $Q \le 10$
- 2. (15 points) $N \leq 5\,000$, $Q \leq 5\,000$
- 3. (17 points) $N \leq 100\,000$, $Q \leq 100\,000$, $H_i \leq 2$ ($0 \leq i \leq N-1$)
- 4. (24 points) $N \leq 100\,000$, $Q \leq 100\,000$, $H_i \leq 20$ ($0 \leq i \leq N-1$)
- 5. (40 points) No additional constraints

Sample grader

The sample grader reads the input in the following format:

- line 1: NQ
- line 2: H_0 H_1 \cdots H_{N-1}
- line 3 + j ($0 \le j \le Q 1$): $L_j R_j$

The sample grader prints the return value of minimum_costs in the following format:

• line 1 + j ($0 \le j \le Q - 1$): C_j